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Neuronal maturation during development is a multistep process regulated by transcription factors. The transcription factor ROR«
(retinoicacid-related orphan receptor ) is necessary for early Purkinje cell (PC) maturation but is also expressed throughout adulthood.
To identify the role of ROR« in mature PCs, we used Cre-lox mouse genetic tools in vivo that delete it specifically from PCs between
postnatal days 10-21. Up to 14 d of age, differences between mutant and control PCs were not detectable: both were mono-innervated by
climbing fibers (CFs) extending along their well-developed dendrites with spiny branchlets. By week 4, mutant mice were ataxic, some
PCs had died, and remaining PC soma and dendrites were atrophic, with almost complete disappearance of spiny branchlets. The
innervation pattern of surviving ROR«-deleted PCs was abnormal with several immature characteristics. Notably, multiple functional CF
innervation was reestablished on these mature PCs, simultaneously with the relocation of CF contacts to the PC soma and their stem
dendrite. This morphological modification of CF contacts could be induced even later, using lentivirus-mediated depletion of rora from
adult PCs. These data show that the late postnatal expression of ROR« cell-autonomously regulates the maintenance of PC dendritic
complexity, and the CF innervation status of the PC (dendritic vs somatic contacts, and mono-innervation vs multi-innervation). Thus,
the differentiation state of adult neurons is under the control of transcription factors; and in their absence, adult neurons lose their

mature characteristics and acquire some characteristics of an earlier developmental stage.

Introduction

Transcription factors drive the developmental acquisition of ma-
ture neuronal features (Polleux et al., 2007; Hobert, 2011). Some
of these transcription factors maintain their expression into
adulthood. The exact role of this adult expression is not clear,
but in some cases they are required to maintain adult neuronal
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characteristics. For example, the removal of Pet-1 or Nurrl in
the adult mouse nervous system results in a progressive loss of
serotonergic or dopaminergic neuron function, respectively
(Kadkhodaei et al., 2009; Liu et al., 2010). The present study
was undertaken to investigate whether the transcription factor
retinoic acid-related orphan receptor « (rora, RORa, NR1D1), a
member of the nuclear hormone-receptor superfamily, is
necessary for the maintenance of adult Purkinje cell (PC)
characteristics.

The expression of RORa in PCs starts very early in develop-
ment and continues during adulthood (Ino, 2004). In spontane-
ous mutant (staggerer) or rora knock-out mice, most of the
Purkinje cells die within the first month of life (Herrup and Mul-
len, 1979; Dussault et al., 1998; Vogel et al., 2000; Doulazmi et al.,
2001). In addition, surviving PCs do not develop spiny branch-
lets, remaining in an immature morphological state (Landis and
Sidman, 1978; Sotelo, 1978; Boukhtouche et al., 2006b). ROR« is
necessary for the retraction of transient PC dendrites early in
development to allow the establishment of a mature dendritic
tree (Boukhtouche et al., 2006b). Furthermore, studies of rora-
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deficient models have suggested some roles for ROR« in the adult
PC: adult rora haploinsufficient mice show premature dendritic
atrophy compared with wild-type mice and also show earlier PC
loss (Zanjani et al., 1992; Hadj-Sahraoui et al., 1997; Doulazmi et
al., 1999; Janmaat et al., 2011). However, it is unknown whether
these effects are the result of ROR« deficiency in the adult or the
cumulative effect of a reduced amount of ROR« throughout
development.

To address the role of RORa in mature PCs, we developed a
mouse model in which the rora gene is deleted specifically in PCs
between the 10th and 21st postnatal day. At 2 weeks of age, PCs in
mutant and control mice have acquired most of their adult char-
acteristics, including a complex dendritic tree with many tertiary
branchlets, parallel fiber (PF) synapses, and climbing fiber (CF)
mono-innervation as well described previously (for review, see
Sotelo and Dusart, 2009; Kano and Hashimoto, 2009; van Welie
etal.,2011). Theloss of RORa from PCs at this relatively late stage
of their maturation was associated with dendritic retraction, almost
complete loss of spiny branchlets, new CF multi-innervation, and
the appearance of perisomatic spines, suggesting regressive changes
with a reversal of developmental processes. The effects of deleting PC
rora even later in adulthood corroborated these observations. Our
findings indicate that continued expression of the transcription fac-
tor RORa is necessary after neuronal maturation to maintain ma-
ture morphological and innervation characteristics in the adult PC.
In the absence of ROR«, PCs develop immature characteristics, in-
cluding CF multi-innervation, suggesting that maintaining the state
of differentiation of adult neurons is under the control of transcrip-
tion factors.

Materials and Methods

Animals. All procedures were submitted and approved by the Regional Eth-
ics Committee in Animal Experiment 3 of Ile-de-France region (p3/2009/
020). Animals had ad libitum access to food and water with 12 h light-dark
cycle. C57BL/6 mice homozygous for the floxed Rora allele (Rora™") (Clin-
ique de la Souris; see Fig. 1A) were crossed with C57BL/6 heterozygous
(Pcp2:Cre™’™) mice, expressing Cre under the control of the Pcp2 (L7)
promoter (B6.129-Tg(Pcp2::Cre)2Mpin, The Jackson Laboratory; see Fig.
1A) to generate Pcp2:Cre*’™;Rorad” " and Pcp2:Cre™ ;Rora™™ mice.
Mating these mice yielded the parent mice used in our study:
P(?pZ::Cre” ~Rord" ™, Pcp2::Cref/ “Rord" ™, Pcp2::Cre+/ “sRord™" and
Pcp2::Cre™"";Rorad™”. A YFPstop™" reporter mouse in which a stop signal is
flanked by two loxP sites was also used (Srinivas et al., 2001). By crossing
YFPstop™” mice with Rora™”, we generated another line of parent mice
YFPstopﬂ/ﬂ;Romﬂm.

For the behavior experiments, we used male littermates derived from
crosses between Pep2::Cre™*/~;Rora™ ™ and Pep2::Cre™ ~;Rorad” ™ to obtain
within the same litters the mutant Pcp2::Cre™” ™ ;Rord I (mutant) and the
three types of control: Pcp2::Cre ’ ;Rora™’" (wild-type control: WT),
PcpZ::Crer ;Rora™™ (L7-Cre control: L7CTRL), and Pcp2::
Cre™’";Rord™ (floxed Rora control: RORCTRL).

For the immunohistochemistry studies, PcpZ::Cre” ;Rord™"* and
Pcp2::Cre7/ ~:Rord”" were mated to obtain the male mutant mice and their
male littermate controls.

For the electrophysiology experiments, to visualize the mutant Purkinje
neurons, the parent mice YFPstopﬂ/ﬂ;Romﬂ/ﬂ and Pcp2::Cre+/ - ;Romﬂ/fZ were
crossed to obtain Pcp2::Cre7/ - ;YFPstopﬂ/ﬂ;Roraﬂ/ﬂ as control and
Pcp2::Cre+/ _;YFPstopﬂ/ﬂ;Romﬂ/ﬂ as mutant. Mice of both sexes (P15-P16)
and males of 1 month of age were used for these experiments.

For the Cre-expressing lentiviral vector injection studies, Rora™" or
YEPstop™"; Rora" male mice of 2 months of age were used.

Mice were genotyped by PCR using genomic DNA prepared from
mouse tails by incubating in 60 ul of 25 myMm NaOH/0.2 mm EDTA at 95°C
for 30 min followed by 5 min at 4°C, then neutralizing the mixture by
adding 60 ul of 40 mm Tris, pH 8.1, or 5 ul of the sample was used in each
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genotyping PCR according to the final volume (20 or 25 ul). Different
primer pairs were used for PCR to identify the different alleles.

Two pairs of primers were used for identifying floxed rora allele: 5'-
AGAGCAATGCCACCTACTCCTGTCC-3' and 5'-AGTACAGGACAC
TTCGGTGTC-3' for one loxP site, and 5'-TTGTGTATACCACCACAA
GTGCACC-3'" and 5'-CTAATCCTCCATCCCTTACAC-3' for the other
loxP site; one for L7Cre allele 5'-CGATGCAACGAGTGATGAGG-3’
and 5'-GCATTGCTGTCACTTGGTCGT-3’, and 3 primers for YFP al-
lele 5'-AAAAGTCGCTCTGAGTTGTTAT-3', 5'-GGAGCGGGAGAAA
TGGATATG-3', and 5'-GCCAAGAGTTTGTCCTCAACC-3'.

PCR cycling was initiated by a denaturation at 95°C for 5 min, then an
amplification through 35 cycles of 30 s at 95°C, 30 s at Tm of primers, and
30sat72°C, followed by10 min at 72°C. The Tm of floxed rora, Pcp2::Cre,
and YFP primers are 60°C, 58°C, and 62°C respectively.

Behavior study. All behavioral studies were performed blind to the
genotype of mice. All animals were tested according to the SHIRPA pro-
tocol (Rondi-Reig et al., 2001; Rondi-Reig and Mariani, 2002). Animals
were kept isolated throughout behavioral experiments and from 7 d
before, to limit the variability resulting from social interaction. The tests
aimed to detect potential differences in sensorimotor control perfor-
mances. Mice were first positioned at the center of an arena made of gray
perspex (45 X 45 cm) surrounded by red Plexiglas walls (30 cm height)
and were allowed free exploration for 10 min, during which the number
of rearings were quantified. Footprint characteristics were measured by
means of ink deposited on the paws of mice; the animals were then placed
at the entrance of a corridor (60 cm long and 7.5 cm wide) with a floor
covered with paper. Dynamic balance was evaluated using the horizontal
rod test (Rondi-Reig et al., 1999). The aim of this test was to estimate the
mouse’s ability to maintain its balance while in motion. The apparatus
consisted of a horizontal rod (50 cm long, 5 cm in diameter) covered with
sticking plaster providing a good gripping surface. It was located 80 cm
above a soft carpet to cushion the possible fall of the animals. Both ends
of the beam were limited by white altuglass disk (50 cm in diameter). The
mouse was placed on the middle of the rod, its body axis perpendicular to
the rod axis. During the test, the time before falling, the distance traveled,
and the walking time were recorded. The test ended when the animal fell
or after 180 s.

To assess motor coordination, an automated hole-board was used
(license #DI101873—01) (Rondi-Reig et al., 2008). It consisted of an ex-
perimental box made of transparent altuglass (32 X 32 X 25 cm), with a
white altuglass floor board, which has 36 holes (2 cm in diameter, 2 cm
deep) arranged in a 6 X 6 grid. The mouse was placed in the middle of the
board, and its behavior was recorded during 10 min. The walking time
and the frequency of stumbles, a measure of motor coordination, were
calculated (Rondi-Reig and Mariani, 2002).

The accelerating rotarod (LE-8200; Bioseb) consists of a horizontal
rod (3 cm in diameter), turning on its longitudinal axis. Mice were placed
on a 5 cm section of the rod facing in the direction opposite to the
direction of the rod rotation, such that the animal had to walk forward to
avoid a fall. The training phase consisted of walking on the rod turning at
a constant speed of 4 rotations per minute (rpm) for successive 30 s trials.
When mice successfully walked on the rotating rod during three consec-
utive 30 s trials, four trials were conducted in which the speed of the
rotation increased gradually from 4 rpm to 40 rpm over 5 min. The
animal had to coordinate its walk with the rotation speed. This test re-
quires strength, efficient balance, and motor coordination. Time spent
on the rotarod was recorded and averaged for the 4 trials.

The muscular strength of the animal’s forepaws was measured using a
grip test (Bioseb). The mouse was held by the base of its tail and allowed
to firmly grab the grid of the device with its forepaws. The mouse was
then pulled gently backwards until it released its grip. The peak force (N)
of each trial was considered as the grip strength. Four successive mea-
surements were averaged.

Tissue preparation. For light microscopy, mice were anesthetized with
sodium pentobarbital (50 mg/kg i.p.) and perfused through the aorta
with 0.12 M phosphate-buffer, pH 7.4, containing 4% paraformaldehyde.
The cerebella were removed and weighed, then postfixed for 2 h. Some
cerebella were cryoprotected in 20% sucrose, frozen in isopentane, and
stored at —80°C until cryostat sectioning. Other fixed cerebella were kept
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in phosphate buffer at 4°C until vibratome sectioning. Cryostat sec-
tions were stored at —80°C and vibratome sections at 4°C until
immunostaining.

For immunostaining, sections were blocked for 1 h in PBS containing
0.25% Triton-X, 0.2% gelatin, 0.1% sodium azide and lysine (0.1 M)
before applying overnight primary antibody in PBS containing 0.25%
Triton-X, 0.2% gelatin, 0.1% sodium azide. Primary antibodies were as
follows: goat anti-FOXP2 (1/500; Abcam); goat anti-ROR« (1/500; Santa
Cruz Biotechnology); mouse or rabbit anti-calbindin-D28K (Calbl)
(both 1/5000; Swant); guinea pig anti-vesicular glutamate transporter 1
(VGLUT], 1/3000; Millipore); guinea pig anti-vesicular glutamate trans-
porter 2 (VGLUT2; 1/3000 Millipore); and chicken anti-GFP (1/200;
Aveslab). After washes in PBS containing 0.25% Triton-X and 2 h incu-
bation with a combination of appropriate species-specific secondary an-
tibodies in PBS containing 0.25% Triton-X, 0.2% gelatin, 0.1% sodium
azide, the sections were washed several times in PBS and mounted in
mowiol (Calbiochem). All the secondary antibodies were from donkey to
allow triple or quadruple immunostainings. We used anti-mouse, anti-
rabbit, and anti-goat linked to Alexa-488 (1:400; Invitrogen), anti-
mouse, anti-rabbit, and anti-goat linked to aminomethylcoumarine (1/
50), anti-rabbit and anti-goat linked to Cy3 (indocarbocyanine, 1/500),
anti-guinea-pig linked to Cy3 (1/200), anti-mouse, anti-rabbit, and anti-
goat linked to Cy5 (indodicarbocyanine, 1/200), and anti-chicken linked
to FITC (1/200, Jackson ImmunoResearch Laboratories).

For electron microscopy, three 2-month-old mutant (Pcp2::Cre ™/ ~;
Rora™™) and three littermate control (Pcp2::Cre /= Rora™") male mice
were anesthetized with sodium pentobarbital (50 mg/kg i.p.) and per-
fused with 400 ml of a freshly prepared solution of 2% paraformaldehyde
and 2% glutaraldehyde in 0.12 M phosphate buffer, pH 7.3, for 20 min at
room temperature. After 1 h at 4°C, the cerebella were carefully dissected
out and left in the same fixative 4 h at 4°C. Vermal slices 200 wm thick
were cut in the parasagittal plane. The lobule 3 of vermal sections were
transferred into a solution containing 2% osmium for 2 h at 4°C. After
washes, they were stained “en bloc” with a solution containing 2% uranyl
acetate for 1 h at 4°C. After washes, samples were dehydrated in graded
ethanol followed by acetone and incubated in 50% acetone-50% Araldite
for 1 h, followed by 10% acetone-90% Araldite for 2 h. They were then
incubated in Araldite for 2 h, before being embedded. Ultrathin (70 nm)
sections were cut using an EM UC6 (Leica Microsystems) and collected
on 400 mesh copper grids. The sections were stained by incubation with
5% uranyl acetate in 70% methanol for 5 min and then with lead citrate
(0.08 M lead nitrate, 0.12 M sodium citrate in CO,-free dH,O) for 5 min.
The sections were observed with a Philips TECNAI 12 (FEI).

Analysis of RORa expression and PC survival. The time course of ROR«
expression was analyzed by immunohistochemistry at P10, P14, P21, and
P60. Three mutant mice (PcpZ::CreH ~;Rora™") and their control litter-
mates (Pcp2:Cre™"";Rora™") were used for each time point. Cerebella
were cut on a cryostat into six series of 16-um-thick sagittal sections. One
series was stained with rabbit anti-Calb1 (to label the PCs), guinea pig
anti-VGLUT2, and goat anti-RORa antibodies. Another series was
stained with goat anti-FOXP2. All the images were acquired using a
nanozoomer (Hamamatsu Nanozoomer Digital Pathology, 2.0 HT,
its fluorescence unit option, L11600-05, and the NanoZoomer’s
3-CCD TDI camera, Hamamatsu Photonics; Cellular Imaging Facility
of the Institut de la Vision, Paris) and analyzed with a 20X objective.
The numbers of RORa-positive and FOXP2-positive PCs were
counted in the anterior lobe (lobules I-V), the posterior lobe (lobules
VI-1X), and the lobule X. The means were calculated for each animal,
and then the percentage of RORa-positive PCs in mutant animals was
normalized to the number of RORa-positive PCs in control animals.
PC survival was evaluated by calculating the percentage of FOXP2-
positive mutant PCs normalized to the number of FOXP2-positive
PCs in the control animals.

Fluorescence quantification of FOXP2 PCs. As PC numbers were ob-
tained by counting FOXP2-positive PC nuclei, we verified that deletion
of rora did not reduce PC expression of FOXP2 and potentially confound
our quantitative analysis. At 2 months, the mean fluorescence signal
intensity of FOXP2 immunolabeling was measured in single PCs. We
performed the experiment using three different mice per genotype, and
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for each of them we analyzed at least 30 PCs, in lobule III, from three
vermal sections. Pictures were captured at 40X magnification with an
exposure time of 500 ms. The mean fluorescence intensity per pixel was
measured on FOXP2-positive PC nuclei using MetaMorph.

Analysis of VGLUT2 innervation on the PCs during development. The
sections stained with Calbl, VGLUT2, and ROR« were also used to
measure the height of molecular layer and VGLUT?2 terminal distribu-
tion in lobule III. Photomicrographs of lobule III from three vermal
sections were taken with a 40X objective (DMR microscope, Leica). On
these pictures, the thickness of the molecular layer in lobule IIT was
measured at every fifth PC. In parallel, on every fifth PC from three
sections of the vermis, we also performed a semiquantification by classi-
fying the somatodendritic distribution of the VGLUT2 puncta on the PC:
(1) present only on the soma, (2) present on both the soma and the
dendritic tree (soma and dendrites), or (3) present only on the dendritic
tree and absent from the soma of the PCs (dendrites only). The distribu-
tion among the three different groups was calculated.

Analysis of VGLUTI1 and VGLUT2 distribution in the adult mutant
mouse. Six series of 50-um-thick cerebellar vibratome sections from
2-month-old mice, three controls (Pcp2::Cre7/ ~;Rord™"), and three mu-
tants (Pcp2:Cre™ ~;Rora™") were analyzed. Sections were stained with
anti-Calbl, anti-VGLUTI, or anti-VGLUT?2, and anti-RORa. Images of
lobule [T in the vermis were taken with a Leica SP5 confocal microscope.
The 16-bit confocal images were acquired with a 63X objective, a frame
size of 1024 X 1024 pixels, and a scan speed of 700 Hz (lines scanned/s),
2-line averaging, and 4-zoom mode. Three regions were analyzed in the
lobule ITI, and three vermis sections were analyzed per animal. The den-
sity of VGLUT1 or VGLUT2 immunostaining was measured using Meta-
Morph 5.0 image analysis system (Universal Imaging). For VGLUT1
immunostaining, the density was measured within a rectangle (730
wm?) located on the middle part of the molecular layer. For VGLUT2,
the density was measured in four different areas. The area termed “PC
soma” is a 400 um ? circle centered on a PC soma. The area termed “PC
stem dendrite” is a 515 wm?* rectangle containing a PC’s stem dendrite.
The “middle part of molecular layer” is a 730 wm ? rectangle positioned
two-thirds up the molecular layer. The “superficial part of molecular
layer” is a 730 um? rectangle located at the most superficial third of the
molecular layer. For appropriate comparison, all the density measures
were normalized to 100 um?. The absence of RORa immunostaining
allows confirmation that the PCs were deleted for rora.

Analysis of axon torpedoes. One easily identified morphological change
was selected to study the PC axons: the torpedoes (Dusart and Sotelo,
1994). Torpedoes are axonal varicosities in the granular layer with diam-
eters >7 um. On Calbl-immunostained lobule ITI, vermal sections from
2-month-old animals (three controls Pcp2::Cre_/ ;Rord™" and three
mutants Pcp2::Cre+/ ~;Rora™"), we counted the number of torpedoes on
at least 100 PCs with clearly visible axons.

Electron microscopic quantification of PF synapses. To count the num-
ber of PF synaptic profiles, photomicrographs were taken on one ultra-
thin section from each of three control and three rora-depleted mice.
Photomicrographs of 7.74 um 2 were taken at 20,500-fold magnification
every two fields in one square of the 400 mesh grid, located just above the
PC layer in the middle of lobule III. Synaptic profiles were then counted
in a total of 308 photomicrographs (153 from control and 155 from
rora-depleted mice). Synaptic profiles crossing two sides of a picture were
excluded, whereas those intersecting the two other sides were included.
PF synaptic profiles were identified as presynaptic varicosities containing
at least three synaptic vesicles and facing a postsynaptic density, and were
easily differentiated from CF profiles that contain a higher density of
synaptic vesicles in a darker matrix (Palay and Chan-Palay, 1974). The
length of postsynaptic densities was measured using Image] software
(Rasband, 2008).

Anterograde tracer labeling. After behavioral testing, eight mutant
(Pcp2::Cre+/ ~;Rord™™) and three control (Pcp2::Cre7/ ~;Rord™) mice
received an injection of anterograde tracer into the inferior olive, as
previously described (Sugihara et al., 2003; Dixon and Sherrard, 2006).

Using the obex as a landmark, a micropipette (tip diameter <40 pum)
was inserted at 50° from the vertical to a depth determined from a
weight—depth curve (Sherrard et al, 1986). The anterograde tracer,
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lysine fixable dextran-fluorescein solution (4% in distilled water; Fluo-
roemerald, D-1820 10,000 molecular weight; Invitrogen), was injected
into the right inferior olive. In each mouse, there was a single injection of
40 nl placed either medially or mid-laterally in the caudal or mid-rostral
region of the inferior olive. The wound was cleaned, the muscles returned
to their natural position, the skin sutured, and the animals maintained in
awarm box until fully recovered. At 72 h after tracer injections, animals
were perfused as described above (tissue preparation). The brainstem
and cerebellum were removed, and the inferior olive and cerebellum
were cut on a vibratome. The 30 wm sections were taken; the brainstem
was always cut coronally and the cerebellum either coronally or parasag-
ittally. Vibratome sections were immunostained for Calb1l, RORa, and
VGLUT?2. Sections were analyzed with a Nikon E800 microscope, and the
location of olivary injections and CF terminals was mapped onto outlines
of the inferior olive and cerebellar cortex as previously described (Dixon
and Sherrard, 2006). The distribution of labeled CF terminals was com-
pared with the areas of labeling, which would be anticipated from the
location of the olivary injection according to known olivocerebellar to-
pography (Sugihara and Shinoda, 2004). Images were taken with a Con-
focal Laser Scanning Microscope (SP5, Leica).

Electrophysiological and morphological analysis. Mice with the genotype
Pcp2::Cre7/ - ;YFPstopﬂ/ﬂ;Romﬂ/ﬂ were used as controls; these were com-
pared with Pcp2:Cre*’~;YFPstop™";Rora™" mutant mice, which lack
RORa« and express YFP. Fluorescent PCs were considered to be mutant
for the purposes of electrophysiological recording.

Mice were deeply anesthetized with inhaled isoflurane and decapi-
tated. Cerebellar slices (250 wm) were prepared and whole-cell patch-
clamp recordings from fluorescent PCs performed as previously
described (Letellier et al., 2007). Extracellular medium contained (in
mM) as follows: 125 NaCl, 2.5 KCl, 1.25 NaH,PO,, 1 MgCl,, 2 CaCl,, 26
NaHCO;, 25 p-glucose, saturated with 95% O,/5% CO,. Picrotoxin (100
M) was added to the extracellular recording solution to block inhibitory
currents. Patch pipettes were filled with a solution containing the follow-
ing (in mm): 120 CsD-gluconate, 13 biocytin, 10 HEPES, 10 BAPTA, 3
TEACI, 2 Na2ATP, 2 MgATP, 0.2 NaGTP, pH 7.3, 290-300 mOsm.
Recordings were performed using an upright microscope (BX50WI,
Olympus) at 20°C. EPSCs resulting from activation of PF-EPSCs or CF-
EPSCs were elicited by stimulation with a saline-filled glass pipette in the
area surrounding the PC. CF-EPSCs were distinguished from PF-EPSCs
by their all-or-none character and by the demonstration of paired-pulse
depression (Konnerth et al., 1990). For PCs in which CF-EPSCs were
successfully recorded at —80 mV, we subsequently depolarized the PC to
—20 mV to avoid voltage-clamp escape of the CF current.

To determine the number of CFs innervating a PC, we counted the
number of discrete CF-EPSC steps that appeared when the stimulation
intensity was gradually increased and/or when the position of the stim-
ulation electrode was changed.

Synaptic currents were further analyzed using Igor Pro (Wavemetrics)
and the NeuroMatic program developed by Jason Rothman (University
College London). Amplitudes and rise times for the CF-EPSCs were
measured. Several parameters were also evaluated for PF-EPSCs re-
corded from control and mutant PCs, including the increase in PF-EPSC

<«

(Figure legend continued.) ~ postnatal day 10 (P10, B,C) and P21 (D,E). Asterisks indicate
RORa-immunoreactive Purkinje cells. The interneurons of the molecular layer (arrows) are still
RORa-immunoreactive in P21 mutant (E). Scale bars: (in B) B, €, 340 um; D, E, 120 um. F, G,
Number of mutant PCs expressing RORc in different lobules. The mutant values are expressed
as a percentage of their respective control values. Percentage of RORa-immunoreactive Pur-
kinje cellsin the vermis (F) and in the different lobes of the vermis (lobules |-V, lobules VI-IX, and
lobule X; G) over time. N = 3 mutants and 3 controls at the different ages: P10, P14, P21,and 2
months. Error bars indicate SEM. F, Two-way ANOVA was applied to analyze the effects of
genotype (F; 14 = 52.63,p < 0.0001) and age (F 5 ;5 = 8.34,p = 0.001), followed by a PLSD
Fisher post hoc analysis. G, Three-way ANOVA was applied to analyze the effects of genotype
(Fi210) = 6604.17, p << 0.0001), age (F3 1) = 729.43, p << 0.0001), and lobules (F; 1) =
3198.44, p < 0.0001) followed by a PLSD Fisher post hoc analysis to compare control and
mutant values at the different ages and the different lobules: **p < 0.01; ***p << 0.001.
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amplitude with increased stimulus intensity (input—output relation-
ship), and short-term paired-pulse facilitation.

After electrophysiological recordings, slices were fixed in 4% parafor-
maldehyde in PB 0.1 M and processed for immunohistochemistry. Slices
were incubated with streptavidin-Cy3 (1:800, Sigma) for 4 h, and then
with anti-ROR« overnight to further confirm that the recorded PCs,
filled with biocytin, lacked RORa.

Analysis of PC dendritic trees and spines: image acquisition and morpho-
logical analysis. The biocytin-filled PCs from the electrophysiological
study were used for morphological analysis. Image stacks were obtained
with a Confocal Laser Scanning Microscope (SP5, Leica) equipped with a
1.4 NA objective (oil-immersion, 63X, Leica) and with the pinhole ap-
erture set to 1 Airy unit. Images coded in 16 bits depth were acquired in
the 570—620 nm emission range and 2 images were taken and averaged
for each z-step. For whole neuron observation, the pixel size was 240 nm
and z-step of 1 um was used. Images stacks were deconvolved using a
Maximum Likelihood Estimation algorithm performed with Huygens
3.6 software (Scientific Volume Imaging) with 50 iterations using theo-
retical PSF. For dendritic spine analysis, the pixel size was set to 60 nm
and z-step to 0.2 wm. The images were deconvolved with 100 iterations
using an experimental PSF, obtained from images of 170 nm diameter
fluorescent latex beads (PS-Speck, Invitrogen) (Heck et al., 2012).

For analysis of PC morphology, a 3D model of the dendritic tree was
reconstructed using Neuronstudio (version 9.92; Rodriguez et al., 2008)
(http://research.mssm.edu/cnic/tools.html) and saved in swc file format.
First, the ImageJ plugin tubeness (o value of 0.8; http://rsb.info.nih.
gov/ij/index.html) was applied to the image stack to reinforce tubular
structures (i.e., dendrites), and the tree was semiautomatically recon-
structed with Neuronstudio; then the 3D model obtained was refined on
the original image stack. Dendrite branches were labeled according to
Strahler order with Neuronstudio. Order 1 corresponds to terminal
branches, and the order number increases toward the soma. Quantitative
morphological parameters of the whole neuron were extracted using
Lmeasure software (Scorcioni et al., 2008) (http://cng.gmu.edu:8080/
Lm/). Sholl analysis was performed with the plugin Simple Neurite
Tracer in Fiji program (http://pacific.mpi-cbg.de). For dendritic spine
analysis, segments from the upper part of the dendrites were recon-
structed so a total of 150—-200 wm dendrite length per neuron was ana-
lyzed. Automated spine detection followed by manual correction was
performed using Neuronstudio. Spine density is defined as the number
of spines for 10 wm of dendrite length.

Recombinant lentiviral vectors and production. Recombinant lentiviral
vectors expressing Cre or GFP under the control of the CMV promoter
were used to prepare stocks of LV-CMV-Cre and LV-CMV-GFP viral
particles as previously described (Zennou et al., 2001). Briefly, HEK 293T
cells were transiently cotransfected with the p8.91 encapsidation plasmid
(Zufterey et al., 1997), the pHCMV-G (vesicular stomatitis virus pseu-
dotype) envelope plasmid, and the pFlap recombinant vectors. The su-
pernatants were collected 48 h after transfection, treated with DNasel
(Roche Diagnostics), and filtered before ultracentrifugation. The viral
pellet was then resuspended in PBS, aliquoted, and stored at —80°C until
use. The amount of p24 capsid protein was determined by the HIV-1 p24
ELISA antigen assay (Beckman Coulter). Virus from different produc-
tions averaged 175 ng/ul of p24 antigen.

Intracerebellar injections of Cre-expressing lentiviral vector into mature
Rord™" mice and analysis of VGLUT2 distribution. Two-month-old
Rord™" or YFPstop™";rora™" male mice were anesthetized by intraperi-
toneal injection with ketamine (146 mg/kg) and xylazine (7.4 mg/kg) and
placed on a Kopf stereotaxic apparatus (Harvard Apparatus). One injec-
tion (2 ul, over 8 min) per animal of either LV-CMV-Cre or LV-CMV-
GFP was performed on the midline at the suture between the parietal and
the occipital bones, and 0.5 mm from pial surface to target lobule VI of
the vermis. Two to 4 weeks after the viral injection (N = 7 for LV-CMV-
Cre, N = 3 for LV-CMV-GFP) or 6 weeks (N = 6 for LV-CMV-Cre, N =
5 for LV-CMV-GFP), the mice were anesthetized and perfused as
described above. Sagittal cerebellar vibratome sections (30 wm) were
immunostained with Calbl, ROR«, GFP, and VGLUT2. Transduced PCs
were identified by the presence of both CaBP and GFP immunostaining,
and the absence of RORa immunostaining was systematically verified.
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Figure 2.  Loss of ROR« in Purkinje cells strongly impaired sensorimotor abilities. Different sensorimotor tasks assessed in
Pep2::Cre™~;Rora™™ (Mutant) and the three types of control: Pcp2:Cre™;Rora™™ (wild-type control; WT),
Pcp2::Cre™ " :Rora™ ™ (L7Cre control, L7CTRL), and Pep2::Cre ™~ ;Rora™” (floxed Rora control, RORCTRL). 4, Examples of foot-
print traces in a WT and a mutant mouse. B—G, Analyses of motor performances revealed that the absence of ROR« affected
muscular strength (B), rearing frequency (C), dynamic balance (D,E), and motor coordination (F,G). Error bars indicate SEM.
N values are indicated in the bars for each experiment. One-way ANOVA was applied to test the effect of genotype for muscular
strength (F 3 55y = 9.7, p < 0.0001), rearing frequency (F s 55 = 9.4, p << 0.0001), walking time on the rod (F 5 55) = 3.67,p <
0.05), distance traveled on the rod (F 5 55) = 9.4, p << 0.0001), the hole-board task (F 5 5;, = 6.2, p << 0.005), and the time spent
on the accelerating rotarod (F 5 55) = 25.1,p << 0.0001) followed by Scheffé’s post hoc analysis. Significant differences between
mutant and all control groups, except for D, were as follows: *p << 0.05; **p << 0.005; ***p << 0.0001.
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20 wm of dendritic shaft. The distribution in the
different groups of the PCs transduced with LV-
CMV-GFP (2-6 weeks), LV-CMV-Cre (2-4
weeks), and LV-CMV-Cre (6 weeks) was calcu-
lated.

Statistical analysis. All variables were initially
analyzed with the Shapiro-Wilk test to deter-
mine whether the data varies significantly from
the pattern expected if the data were drawn
from a population with a normal distribution.
Furthermore, the Levene test was performed to
probe the homogeneity of variances across
groups. Variables that failed the Shapiro-Wilk
or the Levene test were analyzed with nonpara-
metric statistics using Mann—Whitney rank
sum tests for comparing two groups. Variables
that passed the normality test were analyzed by
means of ANOVA followed by a post hoc tests
(PLSD Fisher, Scheffé, or Dunnett) analysis for
multiple comparisons or by Student’s ¢ test for
comparing two groups. Categorical variables
were compared using the Fisher’s exact test. A p
value of < 0.05 was used as a cutoff for statistical
significance. Data are presented as mean = SEM.
The statistical tests are described in each figure
legend.

Results

Time course of the loss of ROR«
expression in Pcp2::Cre ™' ~;Rora"" PCs
To deplete RORa specifically from PCs,
mice with a floxed rora gene were crossed
with mice expressing Cre recombinase un-
der control of the PC-specific Pcp2 gene
promoter to obtain control (Pep2:Cre™~;
Rord™") mice in which ROR« is expressed,
and mutant (Pcp2::Cre+/ ~;Rord™") mice in
which rora has been deleted from the PCs
(Fig. 1A).

In control mice, RORa was detected im-
munohistochemically in PCs and molecular
layer interneurons at all ages tested as previ-
ously described (Fig. 1 B,D) (Ino, 2004). By
contrast, in mutant mice, RORa immuno-
reactivity was present in PCs at P10 (Fig.
1C), but almost entirely absent at P21 (Fig.
1E), whereas the molecular layer interneu-
rons continued to express ROR« (Fig. 1E),
confirming the specificity of the deletion.

To determine the time course of ROR«
deletion, we quantified the number of
RORa-immunoreactive PCs in the vermis
of control and mutant mice. In mutants at
P10, 93% of PCs expressed RORa protein.
The percentage of these RORa-immuno-
reactive PCs decreased rapidly between P10
and P21, falling to only 5% at 2 months (Fig.
1F). The loss of ROR« expression was not

z-stack confocal images (acquired as described above) of the soma and
the stem dendrite of these transduced PCs were obtained with Z step of 1
pm. Using ImageJ software, the number of VGLUT2 puncta directly
apposed on the soma or on the stem dendrite (first 20 wm) were counted
through the stack of images. For the soma, we assigned PCs to three
groups: PCs with (1) 0-2, (2) 3-6, and (3) >6 VGLUT?2 puncta on their
soma. For the stem dendrite, we assigned PCs to four groups as follows: PCs
with (1) 0-5, (2) 6-10, (3) 11-15, and (4) >16 VGLUT2 puncta on the first

homogeneous throughout the cerebellar cortex (Fig. 1G), occurring
earlier in the anterior lobe (lobules I-V) than in the posterior lobe
(lobules VI-IX), and rora deletion in lobule X was much reduced
compared with other lobules (Fig. 1G).

These data show that PC-specific RORa depletion occurs in
this model during a relatively late stage of PC development,
mainly between P10 and P21. We thus used this mutant mouse



9552 - J. Neurosci., May 29, 2013 - 33(22):9546 -9562

Am Evolution of cerebellar weight 2 months Ctrl
60

5 50 kK

TE_,' 40 * k%

% 30

H = Ctrl

N
S

~&—Mutant

P10 P14 P17 P21 P28 2m

" P21 Ctrl

Number of PCs in the different lobules at P21

N

L:VI-IX L:X
Figure 3.

O control

Emutant

% of control FOXP2 PCs

B
N B 0 O N
S & © © & ©o

Chen etal. ® Role of ROR«x in Mature Purkinje Cells

C 2 months Mut D 2 month Purkinje cells

3500 *%
3000
2500
2000
1500
1000

Intensity of FOXP2 labelling

[
=}
<}

o

Ctrl Mutant

. 2 months Mu't

2 Fnonths Ctrl

. -

Number of PCs in the different lobules at 2 months
120 *kk *kk *kk

Ocontrol

Emutant

% of control FOXP2 PCs
fo2)
o

Li-v L:VI-IX L:X

Loss of RORcx in Purkinje cells leads to cerebellar atrophy and Purkinje cell loss. 4, Changes in cerebellar weight during late development; two-way ANOVA was applied to analyze the

effects of genotype (F; 55, = 35.80,p << 0.0001) and age (F, 33 = 11.52, p = 0.001), followed by a PLSD Fisher post hoc analysis to compare control and mutant at each age: **p << 0.01;***p <
0.001. B, C,Images ochpZ::Cref/f -Rora™" (Ctrl, B) and PcpZ::Cre”f -Rora™” (Mut, €) brains and their cerebella at 2 months showed that rora deletion changes only the cerebellar size. D, Graphic
representation of the mean fluorescence intensity of FOXP2 immunostaining in Purkinje cell nuclei. Error bars indicate SEM. **p << 0.01 (Student’s ¢ test). E-H, Photomicrographs of FOXP2-
immunostained lobule Illin vermis parasagittal cerebellar sections from Pcp2::Cre ™~ ;Rora™" (Ctrl, E,G), and Pp2::Cre ™~ ;Rora™" (Mut, F,H) at P21 (E,F) or 2-month-old (G,H). Scale bar, 120 um.
1,J, Percentage of mutant FOXP2-immunoreactive PCin the lobules I-IV, lobules VI-IX, and lobule X of the vermis at P21 (/) and 2 months (J). Error bars indicate SEM. , Two-way ANOVA was applied
to analyze the effects of genotype and lobules; no difference was detected between the two genotypes. J, Two-way ANOVA was applied to analyze the effects of genotype (F; 1,) = 373.12,p <
0.0001) and lobules (£, 1) = 455.37, p << 0.0001) followed by a PLSD Fisher post hoc analysis: ***p < 0.001.

(Pcp2:Cre ™’ ;Rord™™) to study the role played by RORa in PCs
after their early developmental phases.

Rora deletion in PCs after the first postnatal week impairs
motor coordination

Because defects in PC function are generally associated with im-
paired motor behavior, we tested motor behavior in adult rora-
deleted mice. The first signs of motor dysfunction were detected
4-5 weeks after birth, with very slight tremors during locomo-
tion. The symptoms became more evident at 7—8 weeks of age,
with the development of an ataxic gait. We therefore performed a
complete motor behavior study on 2-month-old mice. A foot-
print assay revealed that the mutant mice had an irregular gait
compared with controls, with an abnormally large hindpaw angle
relative to the direction of walking, indicating reduced hindlimb

motor coordination (Fig. 2A). In addition, forepaw muscular
strength was also reduced (Fig. 2B). Analysis of locomotor activ-
ity in the open field revealed that rearing frequency was drasti-
cally reduced in the mutant mice compared with the three control
groups (described in Materials and Methods; Fig. 2C). Dynamic
balance was also affected in the mutant mice as revealed by the
significant reduction in both walking time (Fig. 2D) and dis-
tance traveled on the rod (Fig. 2E). Finally, motor coordina-
tion was also strongly affected by the deletion of rora from
PCs, with the mutant mice showing significantly more stum-
bles than controls in the hole-board task (Fig. 2F) and im-
paired performance on the accelerating rotarod (Fig. 2G).
These data indicate that mice with PC-specific rora deletion
had a strong impairment of motor abilities, presumably re-
sulting from PC dysfunction and/or loss.
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parasagittal cerebellar sections double immunostained for Calb1 (green) and ROR« (red) from PcpZ::(re’/ - ;Rom”/ U (Ctrl, A,CE)
and Pep2::Cre™”~ ;Rora™" (Mut, B,D,F) at P10 (A,B), P14 (C,D), and P21 (E,F). Asterisks label RORcr-immunoreactive Purkinje cell
nuclei. There is the disappearance of RORa immunostaining in mutant PCs from P14, whereas it is still present in the nucleus of
molecular interneurons (arrowheads). Scale bar, 30 wm. G, H, Graphic representations of the surface of PC soma (G) and the PC
dendritic height (H). Error bars indicate SEM. Two-way ANOVA was applied to test the effects of genotype (F; 1) = 5.048, p <
0.05);and age (F, 5, = 18.55,p < 0.001) for the soma (6) and genotype (F 1) = 36.38,p <<0.0001) and age (F ;,) = 135.96,
p < 0.0001) for dendritic height (H), followed by a PLSD Fisher post hoc analysis to compare between genotypes: *p << 0.05;
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similar in the anterior and posterior
lobes (Fig. 3]), indicating that PC mat-
uration at the time of rora deletion did
not affect survival.

PC-specific rora deletion after the first
postnatal week induces atrophic
changes in mature PCs

The motor dysfunction we observed
could also be the result of abnormal mor-
phologic maturation of the surviving PCs.
RORa is well known to be essential for
dendritic development in PCs, and specif-
ically the transition from early transient
bipolar dendrites to the later permanent
dendritic tree (Boukhtouche et al.,
2006b). We evaluated the potential role of
rora in the later stages of PC morphologi-
cal maintenance. The quantification of
Calbl-immunostained cells revealed no
difference either in the size of the PC body
(Fig. 4G) or the height of the PC dendritic
tree (Fig. 4H) between P10 mutant and
control mice, an age at which most PCs
still express ROR« (Fig. 4 A, B). The same
phenotype was found at P14 (Fig. 4G,H),
an age at which most of the mutant PCs

*¥p <0.01.

Rora deletion after the first postnatal week reduces the
number of PCs in the adult

To evaluate the cause of the motor dysfunction, we first examined
the survival of rora-deficient PCs. It is known that mutant or
transgenic mice that lack functional ROR« throughout develop-
ment have greatly reduced numbers of cerebellar PCs (Dussault
etal., 1998; Vogel et al., 2000; Doulazmi et al., 2001). In addition,
mice haploinsufficient for rora show earlier aging-related PC
death (Zanjani et al., 1992; Hadj-Sahraoui et al., 1997; Doulazmi
etal., 1999; Janmaat et al., 2011). We thus asked whether deletion
of rora after the initial period of cerebellar development also af-
fected PC survival.

From P10 to P17, the weight of cerebella from mutant mice was
comparable to control littermates at the same age (Fig. 3A), but from
P21 the cerebellar weight of mutant mice remained stable, whereas
that of controls continued to increase (Fig. 3A—C). No defects in
foliation were observed. When PC nuclei were labeled using FOXP2
immunostaining, no differences were observed between mutant and
control cerebella at P21 (Fig. 3E, F), but there were many gaps in the
PClayer of mutants at 2 months (Fig. 3G,H ). To determine whether
these gaps were the result of decreased FOXP2 expression in mutant
PCs and thus faulty detection, we measured the fluorescent intensity
of FOXP2 immunoreactivity in mutant and control PC nuclei. In
fact, we actually observed increased intensity of FOXP2 immunore-
activity in mutant PCs compared with controls (Fig. 3D). We there-
fore used FOXP2 immunostaining to determine PC number. The
PC counts in the vermis of mutant and control animals were similar
at P21 but 30% lower in the mutant at the age of 2 months (Fig. 3I).
The PC loss was uniform throughout the different lobules (Fig. 3]).
At P21, although ROR« protein was detectable in only 8% of the PCs
(Fig. 1F), PC number in the mutant mice was similar to that of
controls (Fig. 3I). In addition, although loss of ROR« expression
occurred earlier in the anterior lobe (Fig. 1G), rates of PC loss were

are devoid of RORa (compare Fig. 4C,D).
However, by P21, mutant mice showed
smaller PC cell bodies (Fig. 4E-G) and a
considerable reduction in the height of the PC dendritic tree (Fig.
4E,F,H) associated with a reduction of the height of the molec-
ular layer. Then, we evaluated the axons and dendritic trees of
adult mutant RORa-deleted PCs.

An analysis of PC axonal morphology was performed in mu-
tant and control mice at the age of 2 months. Axons in the mutant
were not entirely normal, with a higher incidence of torpedoes
compared with controls (14% and 0.5%, respectively). These re-
sults indicate that some PC axons were modified in the absence of
rora.

To study dendritic morphology of individual PCs, we ana-
lyzed dendritic trees of PCs filled with biocytin. At P15, no dif-
ferences were detected between control PCs and PCs lacking
RORa (Fig. 5A), but the effects of the rora deletion were obvious
at later ages. In 1-month-old animals (Fig. 5B), 30% (4 of 14) of
the mutant PCs had a tree complexity similar to control, but with
areduced size (“small PCs”), whereas most mutant cells (70%, 10
of 14) had a highly atrophic dendritic tree (“atrophied PCs”).
Because these two morphological mutant phenotypes were char-
acterized by different overall shape, they were separated for quan-
titative 3D analysis (Fig. 5C-E). Whereas the height of the
dendritic tree and the total dendritic length were highly reduced
both in small and atrophied PCs, the width of the dendritic tree
was only reduced in the atrophied PCs (Fig. 5C). Sholl analysis
represents the density of branch points at different distances from
the soma. Compared with control PCs, small PCs had similar
numbers of branch points, but the tree was shorter, whereas the
atrophied PCs had very low dendritric complexity on a very small
tree (Fig. 5D). Moreover, in agreement with a Sholl analysis, a
major reduction in the Strahler orders was observed for atro-
phied PCs, whereas only one order was lost for the small PCs (Fig.
5C). Our results indicate that the atrophy process in these small
PCs does not affect all parts of the dendritic complexity equally:
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Morphology of mutant Purkinje cells. 4, Representative control and mutant Purkinje cells filled with biocytin at P15. Neither tree size nor spine density is affected at this stage, although

these PCslacked ROR«x. Error barsindicate SEM. No difference was detected (width or height: Student's ttest; and spine density: Mann—Whitney test). B, Representative control, small, and atrophied
Purkinje cells with their respective 3D dendritic tree model in 1-month-old animals. The Strahler orders are color-coded on the models. The small Purkinje phenotype exhibits a particular tree shape
that is different from the atrophied cells. €, Reconstruction of dendritic trees allows measurements and analysis of width, height, total dendrite length, and Strahler orders. All measurements are
performed in three dimensions on the whole dendritic tree. D, Sholl analysis of control and mutant dendritic trees. A different pattern is observed for the two mutant phenotypes. Small Purkinje cells
have similar branch complexity but reduced height compared with control. Atrophied cell trees have small size and major loss of branches. E, Spine densities measured on upper dendrites show a
similar decrease for both mutant cell populations compared with control. Scale bar, 20 m for all Purkinje cell images and 2 w.m for all dendritic spine images. Error bars indicate SEM. For statistical
analysis, measurements from control neurons were compared with the mutant phenotypes using one-way ANOVA for the following parameters: tree width (F , ;,, = 24.14,p << 0.0001), tree height
(Fy,17) = 78.62, p < 0.0001), total length (F, ¢, = 143.1, p < 0.0001), Strahler order (F , ;) = 29.67, p << 0.0001), and spine density (F, ;) = 50.83, p < 0.0001) followed by Dunnett post

hoc test. NS, Nonsignificant. *p << 0.05. ***p < 0.001. N = 6 control, 4 small, and 10 atrophied PCs.

loss of entire proximal dendritic branches occurred rather than a
uniform centripetal dendritic regression.

Finally, the spine density measured in the upper dendritic
branches was highly reduced in both small and atrophied mutant
PCs (Fig. 5E).

It is important to note that the general morphology of the
mutant PC dendritic trees appeared more mature at P15 than at 1
month of age. This indicates that the deletion of rora in our model
does not interfere with early PC development but rather induces
the regression of the mature dendritic morphology.

Rora deletion in PCs after the first postnatal week induces a
decrease of VGLUT1 terminal density and a redistribution of
VGLUT?2 terminal density on mature PCs

Because the mutant PC dendritic trees are less elaborate, with
fewer branches and distal spines, we asked whether rora deletion
during the second and third postnatal weeks influences the num-
ber and location of their glutamatergic presynaptic partners (i.e.,
PFs and CFs). PF terminals, identified using anti-VGLUT1 im-
munohistochemistry, were observed in the molecular layer of
both control (Fig. 6A) and mutant (Fig. 6B) cerebella in
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m. C, Graphic representation of the density of VGLUT1immunostaining in the molecular layer:
area occupied by VGLUT1 immunofluorescence per 100 wm . Error bars indicate SEM. **p <
0.01 (Student's ¢ test). Three animals were analyzed for each genotype and 9 fields per animal.

2-month-old animals. However, a 40% reduction in the density
of VGLUT1 immunostaining was observed in mutants compared
with control littermates (Fig. 6C).

Using VGLUT2 immunohistochemistry, we then determined
the location of CF terminals on control and mutant PCs at 2
months of age. In control mice, VGLUT?2 staining appeared as
previously described (Miyazaki et al., 2003): rarely around the
soma, very little on stem dendrites, and mainly distributed on the
other parts of the primary dendritic compartment (Fig. 7A-C; i.e., in
the middle part of the molecular layer; Fig. 7G). In contrast, in the
rora-deleted mutant mice, VGLUT2-immunopositive puncta were
observed around the PC soma and the stem dendrite (Fig. 7 E, F), but
seldom on the middle and upper dendrites (Fig. 7D; i.e., in the mid-
dle and superficial part of the molecular layer; Fig. 7G). Densitomet-
ric analysis showed that, compared with the controls, the density of
VGLUT2 immunoreactivity was 42 times higher on the soma in
mutants but was less dense (one-sixth) in the mid-molecular layer
(Fig. 7G). Moreover, the increased density of VGLUT2-stained ter-
minals on the soma, and stem dendrite was associated with the pres-
ence of thorn spines (Fig. 7F), such as those seen during the
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developmental “capuchon” stage of CF development (Ramén y Ca-
jal, 1911; Chédotal and Sotelo, 1992, 1993; Sugihara, 2006).

To determine at what age the altered distribution of VGLUT2-
immunopositive puncta began in control and mutant PCs, we
quantified the localization of VGLUT?2 staining at P10, P14, and
P21, determining the relative distribution of VGLUT?2 staining
on the soma and dendrites. During development, VGLUT?2 labels
both climbing and PF terminals; however, it is possible to distin-
guish between the large CF puncta and the diffuse PF labeling
(Fig. 8). We categorized three types of distribution of VGLUT2-
positive CF puncta on PCs as follows: (1) CF puncta only on the
PC soma, (2) CF puncta on both the soma and the dendrites, and
(3) CF puncta on the dendrites only.

At P10, large VGLUT2 puncta were seen on the proximal
dendrites of both control and mutant PCs (Fig. 8), indicating that
normal developmental somatodendritic CF translocation was
well underway in both cases. In P14 controls, most puncta were
absent from the PC soma and were localized on the dendrites. In
the mutant, a considerable proportion of VGLUT2-positive
puncta (27%) still contacted both the soma and the dendrite. Itis
important to note that the percentage of mutant PCs with large
VGLUT2 puncta apposed to the dendrites was higher at P14
(72%) than at P21 (54%), indicating that the deletion of rora does
not simply block CF somatodendritic translocation: the deletion
reverses this process and favors the reestablishment of CF inner-
vation on the soma.

Electron microscopy of excitatory synaptic inputs to PCs in
2-month-old mutant mice

At 2 months, electron microscopic observations suggest no on-
going degenerative process in mutant mice. Necrotic debris were
seen only rarely, facing normal-looking PF varicosities, or in
phagocytic cells along with lipid inclusions. The drastically re-
duced molecular layer contained large numbers of astrocytic pro-
files filled with gliofilaments, most likely the result of reactive
gliosis after the death of some PCs (Fig. 9F). Surviving PCs were
atrophic, with smaller somata and dendritic trees than in the
controls, as observed in light microscopy. In addition, and as is
the case in the staggerer mutant mouse (Sotelo, 1975), the hypo-
lemmal cisterna (Palay and Chan-Palay, 1974) was very poorly
developed. However, accumulations of short tubular and vesicu-
lar profiles consistent with smooth endoplasmic reticulum,
hypolemmal cisterna, were frequently observed in spine-like pro-
files (Fig. 9A) as well as in medium-sized dendrites (Fig. 9B). The
latter did not resemble the stacks of flattened cisterna reported
after a few minutes of anoxia, which correspond to fixation arti-
facts (Takei et al., 1994).

The most notable characteristic of these dendritic trees was
the scarceness of long-necked spines, which are the postsynaptic
elements of PF synapses onto PCs. Spiny branchlets were practi-
cally absent, although some long filopodial-like processes occa-
sional emerged from smooth medium-sized dendrites (Fig. 9D).
Axo-spinous synapses on PCs were much less frequent (Fig. 9A) in
mutants than in controls, and some occasional synapses were estab-
lished with spines emerging from large proximal branches of PC
dendrites (Fig. 9D); this is similar to what is seen in PCs that have lost
their CF innervation (Sotelo et al., 1975). In the molecular layer, the
PF varicosities were often apposed to neuronal perikarya or covering
the surface of dendritic segments (Fig. 9C,J). Furthermore, some of
the remaining PC spines and filopodia were contacted by more than
one PF (Fig. 9B) and could even be shared by a PF and a CF varicosity
(Fig. 9F). Nevertheless, the density of synaptic profiles established by
PF varicosities remained at ~50% of control value (Fig. 9I), in ac-
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cordance with the results of VGLUT1 im-
munohistochemistry. This reduction of
synaptic profile density was likely the result
of a true loss of synapses rather than their
shrinkage because there was no difference in
the size of postsynaptic densities (Fig. 9K).
To determine whether the remaining PF
synapses were functional, we measured the
input—output relationship and the maxi-
mum PF-EPSC amplitudes recorded in
control and mutant PCs. There were no sig-
nificant differences in these parameters be-
tween the two groups (data not shown),
indicating that, although PF synaptic con-
tacts are differently organized on the mutant
PCs, they are still functional.

As reported above with light micros-
copy, the CFs innervating the mutant PCs
did not reach the upper half of the thinner
molecular layer. They rather showed
characteristics of the immature “capu-
chon” stage (Chédotal and Sotelo, 1992),
with CF contacts on the PC cell body. At
the ultrastructural level, CF varicosities
were easily identified by several morpho-
logical parameters (Larramendi and Vic-
tor, 1967), including the tight packing of
spherical synaptic vesicles, filling almost
the entire surface of the varicosity, to-
gether with the occurrence of large gran-
ulated vesicles and the dense appearance
of the axoplasm (Fig. 9E-H). Although
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CF varicosities were not very numerous,
they were systematically observed in prox-
imity to the PC perikarya and in the neu-
ropil of the deeper part of the molecular
layer, close to the emergence of the stem
dendrites, in parallel with ascending col-
laterals of basket cell axons (Fig. 9H ) as in
control PCs (Chan-Palay and Palay,
1970). They were occasionally apposed to
the smooth surface of the PC somata,
linked to them through attachment plates,

PC soma PC stem dendrite middle part of ML  superficial part of ML

Figure 7.  Distribution of VGLUT2 immunostaining is different in mutant compared with control. A—F, Confocal images of
vermal lobule Il from 2-month-old P(pZ::Cref/ ~:Rora™” (Ctrl, A-C) and Pcp2::(re“ ~:Rora™” (Mut, D~F) parasagittal cerebel-
lar sections double stained for Calb1 (green) and VGLUT2 (red). There is the absence of VGLUT2 in the superficial part of the
molecular layer both for control and mutant (4,D), the decrease of VGLUT2 immunostaining in the middle part of the mutant
molecular layer (D) compared with control (B), whereas there is an increase on the mutant soma and stem dendrite (E) compared
with control (C). F, Enlarged from E, representing two serial confocal sections. There is the presence of varicosities on the soma of
the Purkinje cells (arrowheads). Scale bars: A-E, 15 um; F, 7.5 wm. G, Graphic representation of the density of VGLUT2 immuno-
staining in the molecular layer: area occupied by VGLUT2 immunofluorescence per 100 um? (see Materials and Methods for
description). Error bars indicate SEM. Two-way ANOVA was applied to test the effects of genotype (F; 44 = 9.55,p <<0.001) and
location (F 3 ¢4 = 10.97,p = 0.001) followed by a PLSD Fisher post hoc analysis: ***p << 0.001. Three animals were analyzed for

or contacting small somatic protrusions
(Fig. 9G). In the molecular layer, CF estab-
lished synaptic contacts with either short
thorns emerging form presumptive PC dendrites (Fig. 9F), with
hypertrophic spines forming pseudo-glomerular arrangements
wrapped in several layers of thin astrocytic processes (Fig. 9E), or
sometimes in close vicinity to spines emerging from primary den-
dritic stems. Together, these observations showed that PCs did not
present signs of ongoing degenerative processes, but they did have an
almost-complete loss of dendritic spiny branchlets. The PF and CF
innervations were reorganized and mixed, the PFs mainly contacting
the remaining spines and the smooth surface of PC dendrites and
the CFs contacting the PC soma and stem dendrite.

Rora deletion in PCs after the first postnatal week triggers

CF multi-innervation

The developmental elimination of supernumerary CF synapses
does not occur in the absence of ROR« (Crepel et al., 1980; Mari-
ani and Changeux, 1980). However, it was not clear whether this
is strictly a developmental effect or whether late deletion of rora

each genotype and 9 fields per animal.

later in development would have any effect once mono-
innervation is achieved. Is continued ROR« expression necessary
to maintain this synaptic specificity?

In mutant mice, recombination occurs mainly between P10
and P21 (Fig. 1); thus, RORa is present during the embryonic
(E14, Hamilton et al., 1996) and early postnatal period and is then
no longer synthesized starting at an age when CF synapse elimi-
nation is well underway or nearly complete (Kano and
Hashimoto, 2009). Our morphological studies revealed dendritic
changes and particularly a reversal of the CF somatodendritic
translocation, suggesting functional changes in the CF/PC syn-
apses. We thus evaluated the maturation of CF innervation to
PCs in adult mutant mice using both anterograde tract tracing
and electrophysiology.

Consistent with the VGLUT?2 labeling and ultrastructure de-
scribed above, in 2-month-old mutants, anterogradely labeled
CF terminals showed abnormal structure: specifically, they were
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P21 contacting the mutant PCs were in the same
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Figure 8.

shorter and concentrated around the PC soma and lower den-
dritic branches. Importantly, these adult mutant PCs were con-
tacted by two types of CF terminals: those that were single-labeled
only by VGLUT?2 and others that were double-labeled by both
VGLUT?2 and Fluoremald tracer, which is consistent with inner-
vation by at least two separate CF axons (Fig. 10A4) (Miyazaki and
Watanabe, 2011). Electrophysiological recordings demonstrated
the degree of CF multi-innervation: of 33 mutant PCs recorded
from 5 mutant animals (1-month-old), only 12 were mono-
innervated (Fig. 10 B, C). In parallel experiments using control
littermates of the mutant animals, we found no multiple CF in-
nervation (N = 21 cells, from 3 animals, Fig. 10C). These results
thus indicate that the loss of ROR« expression has a strong effect
on the CF innervation state of PCs in these mice.

In some previous reports of mutant mice, a return to multiple
CF innervation of PCs in the mature cerebellum has been shown
to involve new CFs contacting the most distal part of the dendritic
tree (Miyazaki et al., 2010). The EPSCs from these distal-
contacting CFs have slow kinetics, with rise times of up to 6 ms in
some cases, whereas CFs contacting the normal proximal dendritic
compartment have rise times <1 ms (Miyazaki et al., 2010, their Fig.
S5). We thus compared the rise times of CF-EPSCs recorded in
control and mutant PCs to determine whether the multiple CFs
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Developmental distribution of VGLUT2 immunostaining. Photomicrographs of lobules Il from vermis parasagittal
cerebellar sections triple immunostained for Calb1 (green), VGLUT2 (red), and RORc (blue) from Pep2::Cre '~ ;Rora™" (Ctrl) and
Pcp2::Cre™~;Rora™" (Mut) at P10, P14, and P21. *Purkinje cell somata in contact with VGLUT2-immunoreactive puncta. Arrow-
heads indicate VGLUT2 puncta on Purkinje cell dendrites; arrows indicate PC soma lacking RORcx. Scale bar, 30 wm. Graphic
representation of the distribution of the VGLUT2 puncta on Purkinje cells at P10, P14, and P21. ***p << 0.001 (Fisher’s exact test).

Mut dendritic compartment, as suggested by
tracing studies and immunohistochemistry.
We found no significant differences in rise
times of CF-EPSCs between mutant and
control PCs: CF-EPSC rise times varied
from 0.71 to 1.18 ms in control PCs and
0.53-2.68 ms in mutant PCs (Fig. 10D).
More importantly, in the multi-innervated
mutant PCs, the rise times of CF-EPSCs on
the same PC did not vary substantially, the
difference between rise times never exceed-
ing 0.77 ms. Thus the multiple CFs contact-
ing a mutant PC in this model share the
same functional dendritic compartment.

We next asked whether the adult multi-
innervation observed in the mutant mice
represented an early-stage arrest of the de-
velopmental synapse-elimination process
or abnormal reinnervation by additional
CFs. Because developmental synapse elimi-
nation is necessary for the refinement
of normal olivocerebellar topography
P21 (Fuhrman et al., 1994), we evaluated the dis-
tribution of anterogradely labeled CF axons
in adult mutant mice. Despite the presence
of multi-innervation, the topographic dis-
tribution of labeled CFs was consistent with
the location of the olivary injections (data
not shown) in accordance with known ol-
ivocerebellar topography (Sugihara and
Shinoda, 2004), suggesting that olivocer-
ebellar topography had undergone normal
developmental regression and that multi-
innervation was the result of subsequent lo-
cal CF sprouting.

To verify this, we recorded from PCs of
mutant animals and their control litter-
mates at P15-P16, an age at which normal
developmental synapse elimination is
nearly complete (Fig. 10E). We found that 87.5% of mutant PCs
(N = 16 cells, n = 3 animals) were mono-innervated at this age,
compared with 75% of control littermate PCs (N = 16 cells, n =
3 animals); this difference is not statistically significant. Thus,
mutant PCs appear to undergo a normal process of synapse elim-
ination during development, and are contacted later by addi-
tional CFs once RORa is no longer expressed.

Ctrl Mut

Injection of Cre-expressing lentivirus in adult

rora™" cerebellum

To verify that rora deletion in our model did not alter some late
component of PC dendritic development, we examined the effect
of rora deletion in adulthood. We injected LV-CMV-GFP (as a
control) or LV-CMV-Cre lentiviral vectors into the cerebella of
2-month-old YFPstop™";rora". The PC morphology was studied
after survival times of either 2—4 weeks or 6 weeks. In LV-CMV-
GFP—injected rora” % mice, transduced PCs (GFP-immunoreactive)
displayed normal morphology and VGLUT?2 distribution on their
dendrites (Fig. 11D). However, in LV-CMV-Cre-injected rora™”"
mice, the few transduced PCs, as identified by the lack of an RORa-
immunoreactive nucleus and either the expression of Calbl (Fig.
11A,B) or the expression of YFP revealed by GFP immunobhisto-
chemistry (Fig. 11C), had VGLUT2-stained puncta around the soma
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Figure9.  Electron micrographs of PFs (4-D) and CFs (E-H), on Purkinje cells of 2-month-old rora conditional mutant mice. A, *Two PF varicosities establish synaptic contact with two Purkinje
cell dendritic spines. There s presence of vesicular and tubular profiles of smooth endoplasmic reticulum within the spines. B, *Two PF varicosities synapsing on the same dendritic spine. C, Electron
micrograph of a medium-sized Purkinje cell dendrite (PC den). The cytoplasm contains abundant profiles of smooth endoplasmic reticulum. This dendritic branch is devoid of spines, and seven PF
varicosities (1-7) are in direct apposition with its surface, some of them establishing normal looking synaptic contacts with the smooth surface of the dendrite. D, Large dendritic branch of a Purkinje
cell (PCden). This stem dendrite is not smooth, and two spines (arrows) are emerging from it. The spine at the upper left corner of the micrographis, in this plane of the section, free of innervation.
In contrast, the lower spine is synapsing with a PF varicosity, indicating that PFs have invaded the dendritic domain normally reserved for CFs. E, CF varicosity, identifiable by the large density of
rounded synaptic vesicles, the presence of some large granulated vesicles and the electron density of the cytoplasmic matrix. The CF is in synaptic contact with a long-necked dendritic spine (arrow)
belonging to a small-diameter Purkinje cell dendrite (PCden). F, *CF varicosity synapsing on two Purkinje cell dendritic spines. Exceptionally, one of these spines is also in synaptic contact with a small
PF varicosity. There is adjacent glial profile (glia), most probably belonging to a Bergmann fiber, filled with gliofilaments, indicating reactive gliosis. G, CF varicosity in synaptic contact with a small
somatic appendage (arrow) emerging from the cell body of a Purkinje cell. H, Stem dendrite of a Purkinje cell (PC den) illustrating two classes of axon terminal climbing along the dendrite. The
varicosity at the lower right corner belongs to a recurrent collateral of a basket cell axon (BF), and is straddling a small protrusion (arrow) on the smooth surface of the dendrite. (Figure legend continues.)
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rord™" PCs transduced with LV-CMV-
Cre present an increased number of
VGLUT?2 puncta on their soma or on their
stem dendrites compared with PCs trans-
duced with the control lentiviral vector
(LV-CMV-GFP; Fig. 11E,F). These mor-
phological modifications are very similar to
those obtained with mutant (Pcp2:Cre*’~;
Rord™") mice and confirm that ROR« ex-
pression in the adult has a role in maintain-
ing appropriately distributed CF synaptic
innervation.

Discussion

In the cerebellum, RORa is expressed in
PCs and molecular layer interneurons
during development and through adult-
hood (Ino, 2004). Although its role in
early development has been studied in stag-
gerer mice and more recently using lentiviral
vectors (for review, see Boukhtouche et al.,
2006a), these previous studies did not ad-
dress the potential role of ongoing ROR«
expression in the adult.

In this study, we used Cre-lox technol-
ogy to delete rora specifically from PCs at
~2 weeks postnatal, an age when these
neurons have passed the period of devel-
opmental neuronal death; they have an
elaborate dendritic arbor; and most are
innervated by a single CF, following
I the developmental process of multi-

innervation and synapse elimination (for
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and the stem dendrites (Fig. 11A—C). Furthermore, although it is not
clear whether the YFP completely filled the dendritic tree, trans-
duced PCs appeared to have an atrophic dendritic tree (compare
Fig. 11C with Fig. 11D). Quantitative analysis showed that more

<«

(Figure legend continued.) At the upper part of the dendritic profile, there is a varicosity of a
passing CF that does not establish synaptic contact at this plane of the section. The location of
this CF could correspond to that of a CF at the “capuchon” stage. /, Graphic representation of PF
synaptic profiles per 7.74 um . Error bars indicate SEM. *p < 0.05 between control (Ctrl) and
mutant values (Student’s ¢ test). J, Graphic representation of PF synaptic profiles on dendrites
(identified by the presence of mitochondria) per 7.74 um 2. Error bars indicate SEM. **p < 0.01
between control (Ctrl) and mutant values (Student’s t test). K, Graphic representation of length
of postsynaptic densities. Error bars indicate SEM. No difference was detected between control
(Ctrl) and mutant values. Scale bars, 250 nm.

Multiple CF innervation of mutant Purkinje cells after deletion of rora. A, Photomicrographs showing calbindin-
immunolabeled Purkinje cells (blue) contacted by anterogradely labeled CFs (left) after injection of Fluoroemerald (green) into the
inferior olive. Immunolabeling with VGLUT2 (red; middle) labels all CFs. The composite photomicrograph shows that at least two
CFs contact these 2 PCs. Arrowheads indicate single-labeled CF (VGLUT2); arrows indicate double-labeled CF (VGLUT2, Fluoroem-
erald). Scale bar, 12 wm. B, Examples of CF currents recorded in adult control PC (left) and a mutant PC (right). The control PCis
contacted by asingle CF; the mutant PCis contacted by three CFs. €, Histogram showing the percentage of adult control (white bar)
and mutant (black bars) PCs contacted by one or more CFs. p << 0.001 between the two groups (Fisher's exact test). D, Frequency
histogram showing the distribution of CF-EPSC rise times recorded in mutant and control PCs in the adult. There was no difference
between the three groups (control CF-EPSCs; largest CF-EPSCs in the mutant; and smaller CF-EPSCs in the mutants; Fisher’s exact
test). E, Histogram showing percentage of P15-P16 control PCs (white bars) and mutant PCs (black bars) showing CF mono-
innervation or double innervation. There was no difference between the two groups (Fisher's exact test).

m review, see Sotelo and Dusart, 2009; Kano

STEE and Hashimoto, 2009). Deletion of rora
from PCs after P10 induced morphologi-
cal regression of the dendritic arbor, the
loss of distal spiny branchlets, the reestab-
lishment of CF multiple innervation along
with their perisomatic and basal stem
dendritic relocation, and the death of
some PCs, in association with a loss of
motor coordination. Deletion of rora in
the adult using lentiviral Cre induced a
similar relocation of CFs to the periso-
matic and basal dendritic compartment.
These results show that, in addition to the
well-known roles of RORa during early
development, this transcription factor is necessary for the
maintenance of normal characteristics in the adult PC shape
and connectivity.

Our data show that late rora deletion is associated with a loss
0f 30% of PCs at 2-month-old. It has been previously shown that
RORa« haploinsufficiency seems to render PCs more vulnerable,
as heterozygous staggerer mutants progressively lose 30% of their
PCs between the ages of 3-12 months (Zanjani et al., 1992; Hadj-
Sahraoui et al., 1997; Doulazmi et al., 1999; Janmaat et al., 2011).
Thus, the PC loss we observed is similar to what is seen in models
of RORa haploinsufficiency. Rates of PC loss were similar in the
anterior and posterior lobes, although anterior lobes lost ROR«
expression before posterior lobes, indicating that there is no di-
rect relation between PC maturation at the time of rora deletion
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and PC death. Furthermore, at the elec-
tron microscopic level, we did not detect
signs of ongoing degeneration. These
observations support the proposal that
RORa is a protective agent rather than a
survival factor for PCs in adulthood,
possibly by providing neuroprotection
against reactive oxygen species-induced
apoptosis (Boukhtouche et al., 2006¢)
and steroid hormone deficiency (Jan-
maatetal.,2011). Our data indicate that
the absence of RORa will progressively
increase the risk of cell death over time,
depending on the accumulated insults
received by PCs.

One clear result of the loss of ROR« in
this model is a striking reduction of the
dendritic tree and torpedo axon modifica-
tions, suggesting regressive events. The
normal PC dendritic tree is compartmen-
talized into a proximal compartment,
composed of thick dendritic branches,
giving rise to the distal compartment of
the spiny branchlets. The proximal com-
partment is the postsynaptic domain for
CFs (on small rounded spines, the
thorns); the distal compartment is con-
tacted by PFs (on spines of the tertiary
branchlets) (for review, see Cesa and
Strata, 2009). RORa haploinsufficiency is
associated with premature dendritic atro-
phy from 4 months of age (Hadj-Sahraoui
et al., 2001). However, in that model, the
haploinsufficiency is present throughout
life, and it is thus not possible to deter-
mine whether this dendritic atrophy is
simply a delayed effect of abnormal devel-
opment. Here, with the removal of rora
after substantial development of the den-
dritic tree, we observed a significant de-
crease of the size of the arborization 6
weeks after rora deletion at P30. This in-
dicates that the atrophy in the previously
studied haploinsufficient mice may well
be the result of a need for ROR« in the
adult to maintain the dendritic tree, rather
than a developmental phenomenon. Thus,
in addition to its role in the initial devel-
opment of the dendritic tree (Boukhtou-
che et al., 2006b), ROR« also seems to be
required for dendritic maintenance
throughout life.
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Figure 11.
sections triple-immunostained for Calb1 (green), VGLUT2 (red), and RORcx (blue) from 2-month-old Pep2::Cre ™~ ;Rora
jected with Cre lentiviral vector with a 2 week survival time. A’, The ROR« staining at the level of the PCnucleus is presented in
black and white. Double-head arrows point to the same PC nuclei between A and A’. Arrows indicate the presence of VGLUT2
puncta. B, The transduced Purkinje cell (lacking an RORa-immunoreactive nucleus, arrow) presents VGLUT2-immunoreactive
puncta (arrowhead) around its soma. €, D, Maximal projections from stacks of confocal images of vermis parasagittal cerebellar
sections triple-immunostained for GFP (green), VGLUT2 (red), and RORcx (blue) from 2-month-old YFPstop™":Rora™" injected
with Cre lentiviral vector () or GFP lentiviral vector (D) with a 6 week survival time. €', D", Confocal images from the stack used to
make imagesin Cand D, respectively. The magnification is the samein Cand D, indicating that the rora-depleted PCis atrophic. The
transduced Purkinje cells (lacking an RORc-immunoreactive nucleus, arrows) present VGLUT2-immunoreactive puncta (arrow-
heads) either around their soma or on the stem part of their main dendritic branch (C,C’), whereas a control PC (D,D") does not.
Scale bars: A, 100 wm; B, 10 wm; C, €', D, D', 20 m. E, F, Histograms showing the percentage of PCs transduced with
LV-CMV-GFP (white bar; control vector), or LV-CMV-Cre with 2 week to 4 week survival time (gray bars) or 6 week survival time
(black bars) contacted by more or fewer VGLUT2 puncta on soma (E) and the stem dendrite (F). The number of VGLUT2 puncta
directly apposed to the soma or to the stem dendrite (first 20 um from the cell body) were counted throughout the stack ofimages.
In both cases, p << 0.001 (Fisher’s exact test).

Adult mutant PCs had many fewer spiny branchlets than P15
mutant PCs, suggesting that dendritic spiny branchlets are lost

Our results further show that the reduction of the dendritic tree is
not simply the result of nonspecific dendritic atrophy. In 30% of the
analyzed cells (the “small PCs”), mutant PCs were reduced in size
but had a dendritic complexity near to control. These small PCs have
reduced dendritic tree height but not width compared with control
PCs. It is interesting to recall that, during rat PC development, den-
drite growth occurs first mainly in sagittal direction, reaching its full
width by P15, and then in height (Berry and Bradley, 1976). Thus, at
least for some PCs, the dendritic tree degeneration process appears
to be the reverse of the developmental pattern.

rather than failing to develop. In addition, spiny branchlets are
also absent from quite complex dendritic tree (small PCs), indi-
cating that branchlet loss precedes, and might be independent of,
branch retraction. It is known that, if ROR« is absent throughout
development, the surviving PCs lack spiny branchlets and PF
synapses (Sotelo and Changeux, 1974; Landis and Sidman, 1978).
However, the multiple developmental roles of RORa complicate
the analysis of its role in the formation and maintenance of
spines. Nevertheless, numerous observations from both normal
and abnormally developed cerebella indicate that the formation
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of PC tertiary spines does not depend on presynaptic PF axons
but are likely to be an intrinsic property of the neuron (Sotelo,
1978; Yuste and Bonhoeffer, 2004). The experimental model de-
scribed here allows us to delete rora in a relatively mature PC. The
observation that these PCs then lose most of their distal spines
despite the presence of PF terminals on PC dendrites leads us to
propose that rora may be one of the important factors in the
maintenance of PC distal spines throughout life.

In addition to these regressive events, late removal of rora
from PCs induces three immature characteristics. First, these PCs
present a higher level of FOXP2 immunoreactivity compared
with control. This is consistent with reacquisition of PC imma-
turity because it is known that FOXP2 expression decreases in
PCs as development proceeds (Ferland et al., 2003; Schiiller et al.,
2006). Second, in both mutant and virally transduced mature
PCs, the location of CFs resembles the immature “capuchon”
stage (Ramoén y Cajal, 1911; Chédotal and Sotelo, 1993; Wa-
tanabe and Kano, 2011). Similar patterns of abnormal CF loca-
tion were described in several spontaneous mouse mutations
affecting the cerebellum (Rossi et al., 1995); the CF morphology
reflects preceding interactions with their postsynaptic neurons
and is determined by the age of onset and progression of PC
degeneration.

Third, in addition to the abnormal CF localization, we ob-
served a return to multi-innervation of PCs by CFs. To our
knowledge, the only other clear reestablishment of multiple CF
innervation (as opposed to a persistence of developmental multi-
innervation) has been observed in the case of late deletion of
GluR#&2 (Miyazaki et al., 2010). GluR&2 is involved in the main-
tenance of PF/PC synapses (Takeuchi et al., 2005). In the mouse
model of GluR&2 ablation in adult PCs, Miyazaki et al. (2010)
showed that this receptor is a key element for maintaining CF
mono-innervation, likely by preventing the sprouting of these
fibers and their invasion of PF sites on nearby PCs. Indeed, con-
siderable evidence suggests that the distribution of innervation
territory on the PC dendrites results from heterosynaptic compe-
tition between PFs and CFs (Cesa and Strata, 2009). In the ab-
sence of RORa, the process of new CF multi-innervation is very
different: the CFs, instead of invading the PF territory, return to
the immature perisomatic net and “capuchon” stages (Ramon y
Cajal, 1911; Chédotal and Sotelo, 1992; Watanabe and Kano,
2011). Nevertheless, the regressive morphological processes that
these PC dendritic trees undergo, by suppressing the vast major-
ity of tertiary spines, create an abnormal situation for adult PCs in
which the partition of dendritic territory between PFs and CFs is
disturbed. This situation is similar to that described for PC-
Ca,2.1 KO mice, in which the extent of CF territory was limited to
the soma and basal dendrites, whereas PF territory was expanded
(Miyazaki et al., 2012). However, in late rora-deleted PCs, we do
not observe the hyperspiny transformation of the PC proximal
somatodendritic domain to the extent described in PC-Ca,2.1
mutants. Further work is necessary to understand the different
mechanisms involved in heterosynaptic competition between
PFsand CFs and homosynaptic competition among multiple CFs
(Watanabe and Kano, 2011).

Thus, the loss of RORa in mature PCs induces the reacquisi-
tion of several immature characteristics, suggesting that this tran-
scription factor is important for the maintenance of the mature
differentiation stage of PCs. We propose that ROR« is a terminal
differentiation gene as defined by Hobert (2011), that is, part of
the program that defines the functional properties of a mature PC
throughout its life.
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